Drift Protocol

Audit

ed by:

OtterSec
Caue Obici

mailto:contact@osec.io
mailto:caue@osec.io
mailto:r@osec.io

Contents

01 Executive Summary 2
OVEIVIEW . . . o o e 2
Key FIndings o o e e e e e e e 2

02 Scope 3

03 Findings 4

04 General Findings 5
OS-DFT-SUG-00 | Display Of Important Transaction Information 6
OS-DFT-SUG-01 | Unpinned NPM Dependencies 7
OS-DFT-SUG-02 | Type Confusion Issues v ittt e e et e e 8

Appendices

A Vulnerability Rating Scale 9
B Procedure 10

© 2023 Otter Audits LLC. All Rights Reserved. 1/10

01 ‘ Executive Summary

Overview

Drift Labs engaged OtterSec to perform an assessment of the snap-solana program. This assess-
ment was conducted between August 2nd and August 4th, 2023. For more information on our auditing
methodology, see Appendix B.

Key Findings
Over the course of this audit engagement, we produced 3 suggestions in total.

We provided recommendations concerning the snap dialog’s display of specific crucial transaction details
to the user before approval (0S-DFT-SUG-00), which could lead to financial losses to a user who would
blindly approve a transaction. Additionally, we suggested addressing unpinned npm dependencies, which
may render the application susceptible to supply chain attacks (OS-DFT-SUG-01). These vulnerabilities
can have severe consequences since they would alter the function of the snap, which has privileged
permissions.

We also recommended remediations against type confusion issues within the RPC parameters (OS-DFT-
SUG-02). Although we did not find any vulnerabilities that are related, it may prevent future attacks against
potential vulnerabilities introduced in new features.

© 2023 Otter Audits LLC. All Rights Reserved. 2/10

02 ‘ Scope

The source code was delivered to us in a git repository at github.com/drift-labs/snap-solana. This audit

was performed against commit 04fa431.

A brief description of the programs is as follows.

Name Description

snap-solana A Metamask Snap that facilitates the connection between Metamask and Drift, enabling
Metamask to function as a Solana wallet. This snap empowers users to bridge their
Ethereum assets to Solana by connecting to Drift while providing the capability to trade
on Drift directly from within the Metamask interface.

© 2023 Otter Audits LLC. All Rights Reserved. 3/10

https://github.com/drift-labs/snap-solana
https://github.com/drift-labs/snap-solana/commit/04fa431c07b95eb85ca68c815cb2c23f27bb638e

03 ‘ Findings

Overall, we reported 3 findings.

We split the findings into vulnerabilities and general findings. Vulnerabilities have an immediate impact
and should be remediated as soon as possible. General findings do not have an immediate impact but

will help mitigate future vulnerabilities.

Severity Count

Critical
High

Medium
Low
Informational

© 2023 Otter Audits LLC. All Rights Reserved. 4/10

04 ‘ General Findings

Here, we present a discussion of general findings during our audit. While these findings do not present an
immediate security impact, they represent anti-patterns and may result in security issues in the future.

ID Description

OS-DFT-SUG-00 The snap’s dialog does not show certain important information regarding the trans-
action.

OS-DFT-SUG-01 Unpinned dependencies in the project introduce vulnerabilities to supply chain
attacks focused on those specific dependencies.

OS-DFT-SUG-02 The RPC parameter types are not validated, which may result in type confusion
issues.

© 2023 Otter Audits LLC. All Rights Reserved. 5/10

Drift Protocol Audit 04 | General Findings

OS-DFT-SUG-00 | Display Of Important Transaction Information

Description

The system utilizes Metamask’s snap dialog feature to present users with specific transaction-related
details before approving the transaction. However, certain crucial transaction information is currently not
being displayed, such as:

« Changesin SOL/SPL token balances.

+ The gas fee.
Remediation
Simulate the transaction to show this information so that the user is informed of these parameters before

they decide to approve the transaction.

Patch

Drift Labs acknowledged the issue and will release a patch in subsequent versions.

© 2023 Otter Audits LLC. All Rights Reserved. 6/10

Drift Protocol Audit 04 | General Findings

OS-DFT-SUG-01 | Unpinned NPM Dependencies

Description

The application incorporates specific NPM packages for which the dependency versions are not explicitly
defined in the project’s configuration. This situation may allow supply chain attackers to exploit a package
within the indicated version range. Consequently, developers who integrate these unpinned dependencies
may unknowingly install the compromised package version.

Furthermore, it is crucial to consider the potential cascade effect of supply chain attacks. If a widely
utilized package with numerous dependencies is compromised, many projects that employ that package
may be impacted.

Remediation

Ensure that all the dependencies utilized within the application clearly specify the exact version required
by the application.

Patch

Fixed in commit 5029081 by making the following modification to the package. jsonfile:

package.json

"@typescript-eslint/eslint-plugin": "6.2.0",
"@typescript-eslint/parser": "6.2.0",
"eslint": "8.44.0",
"eslint-config-prettier": "8.9.0",

"husky": "8.0.3",

"lint-staged": "13.2.3",

"prettier": "2.8.8",

"typescript": "5.1.6"

45
B
4t
4L
b
4L
4t
4L

© 2023 Otter Audits LLC. All Rights Reserved. 7/10

https://github.com/drift-labs/snap-solana/commit/50a9081d71d6b2649199ed814ae2ffc3a4d31ccd

Drift Protocol Audit 04 | General Findings

OS-DFT-SUG-02 | Type Confusion Issues

Description

The validation of RPC parameter types is currently lacking, which may expose the application to type
confusion vulnerabilities due to the untrusted nature of the data passed through them.

Remediation

Add strict recursive checks against the type of each RPC parameter at run time since they are untrusted
data.

(typeof params.serializeConfig != 'object' &&
typeof params.serializeConfig.requireAllSignatures != 'boolean' &&

typeof params.serializeConfig.verifySignatures != 'boolean'

At

new Error("Type error");

}

Patch

Fixed in commit 5029081 by adding strict type checks against all RPC parameters.

© 2023 Otter Audits LLC. All Rights Reserved. 8/10

https://github.com/drift-labs/snap-solana/commit/50a9081d71d6b2649199ed814ae2ffc3a4d31ccd

A ‘ Vulnerability Rating Scale

Werated our findings according to the following scale. Vulnerabilities have immediate security implications.
Informational findings can be found in the General Findings section.

Critical Vulnerabilities that immediately lead to loss of user funds with minimal preconditions
Examples:

+ Misconfigured authority or access control validation
« Improperly designed economic incentives leading to loss of funds

High Vulnerabilities that could lead to loss of user funds but are potentially difficult to
exploit.

Examples:

+ Loss of funds requiring specific victim interactions
+ Exploitation involving high capital requirement with respect to payout

Vulnerabilities that could lead to denial of service scenarios or degraded usability.
Examples:

« Malicious input that causes computational limit exhaustion
+ Forced exceptions in normal user flow

Low Low probability vulnerabilities which could still be exploitable but require extenuating
circumstances or undue risk.

Examples:

+ Oracle manipulation with large capital requirements and multiple transactions

Best practices to mitigate future security risks. These are classified as general findings.
Examples:

« Explicit assertion of critical internal invariants
+ Improved input validation

© 2023 Otter Audits LLC. All Rights Reserved. 9/10

B ‘ Procedure

As part of our standard auditing procedure, we split our analysis into two main sections: design and
implementation.

When auditing the design of a program, we aim to ensure that the overall economic architecture is sound
in the context of an on-chain program. In other words, there is no way to steal funds or deny service,
ignoring any chain-specific quirks. This usually requires a deep understanding of the program’s internal
interactions, potential game theory implications, and general on-chain execution primitives.

One example of a design vulnerability would be an on-chain oracle that could be manipulated by flash
loans or large deposits. Such a design would generally be unsound regardless of which chain the oracle is
deployed on.

On the other hand, auditing the implementation of the program requires a deep understanding of the
chain’s execution model. While this varies from chain to chain, some common implementation vulnerabil-
ities include reentrancy, account ownership issues, arithmetic overflows, and rounding bugs.

As a general rule of sum, implementation vulnerabilities tend to be more “checklist” style. In contrast,
design vulnerabilities require a strong understanding of the underlying system and the various interactions:
both with the user and cross-program.

As we approach any new target, we strive to get a comprehensive understanding of the program first. In
our audits, we always approach targets with a team of auditors. This allows us to share thoughts and
collaborate, picking up on details that the other missed.

While sometimes the line between design and implementation can be blurry, we hope this gives some
insight into our auditing procedure and thought process.

© 2023 Otter Audits LLC. All Rights Reserved. 10/10

	Executive Summary
	Overview
	Key Findings

	Scope
	Findings
	General Findings
	OS-DFT-SUG-00 | Display Of Important Transaction Information
	OS-DFT-SUG-01 | Unpinned NPM Dependencies
	OS-DFT-SUG-02 | Type Confusion Issues

	Appendices
	Vulnerability Rating Scale
	Procedure

